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A novel approach to the synthesis of partially reduced different ring sizes of PAH analogs with sec.amino
and nitrile functionalities is delineated through base-induced ring transformation of 4-sec.amino-2-oxo-
5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles by a carbanion, generated in situ from cyclopenta-
none, cyclohexanone, cycloheptanone, and cyclooctanone separately in good yields. An increase in the
size of cycloalkanone ring beyond cyclooctanone restricts the ring transformation under analogous
reaction conditions possibly due to bulky conformation of higher homologs. The synthetic method
provides an efficient general route for the construction of angularly fused partially reduced polycyclic
aromatic hydrocarbons: 5-sec.amino-2,3,6,7-tetrahydro-1H-cyclopenta[c]phenanthrene-4-carbonitriles,
6-sec.amino-2,3,4,7,8-pentahydro-1H-benzo[c]phenanthrene-5-carbonitriles, 7-sec.amino-2,3,4,5,8,9-
hexahydro-1H-cyclohepta[c]phenanthrene-6-carbonitriles, and 8-sec.amino-2,3,4,5,6,9,10-heptahydro-
1H-cycloocta[c]phenanthrene-7-carbonitriles.

� 2009 Elsevier Ltd. All rights reserved.
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Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously pres-
ent as environmental pollutants and most of them are carcinogenic
in animal models. Human populations exposed1,2 to these contam-
inants, produced by incomplete combustion of fossil fuels, coal,
wood burning, and tobacco smoke are real threat and instrumental
in causing cancer. It has been observed that PAHs are activated by
cytochrome P450 to diol epoxides that covalently bind cellular
DNA through C–N linkage and induce tumorigenesis. The steric
constraints in the bay region of PAHs significantly enhance the car-
cinogenicity3,4 and attenuate5–8 further with the formation of fjord
region diol epoxides. It has been observed that the bay region diol
epoxides preferentially bind with amino function of deoxyguano-
sine residue while fjord region diol epoxides preferably react with
amino group of deoxyadenosine of cellular DNA9,10 to form carcin-
ogen-deoxyadenosine adducts, instrumental in tumor initia-
tion.11,12 Recent studies have shown that tumorigenic effect of
PAHs is influenced by the preferred conformation of the adduct
in DNA template. Partial reduction of PAHs brings conformational
change in the adduct and thereby reduces the carcinogenicity of
the molecule.

Among various carcinogens, benzo[c]phenanthrene (BcP) I is
relatively weak carcinogen13 present in the environment.14 The
two metabolites of BcP 3,4-dihydrodiol I and corresponding diol
ll rights reserved.
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epoxide II are highly carcinogenic15,16 (Fig. 1). Similar finding has
also been reported with benzochrysenes,17 and dibenzo[a,f]anthra-
cenes18 (Fig. 1).

The extensive literature survey revealed that there are limited
regioselective routes for the synthesis of different ring sizes of
PAH analogs.16–19 This observation led to the synthesis of partially
reduced cycloalkyl[c]phenanthrenes III with distorted conforma-
tion to assess the impact of partial reduction and size of fused ali-
cyclic ring on the degree of distortion and carcinogenicity of the
molecule. Our strategy to synthesize planarity distorted PAHs is
II III

Figure 1.
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a piperidin-1-yl H 86
b 4-methylpiperidin-1-yl H 78
c tetrahydroisoquinolin-2-yl H 89
d 4-benzylpiperazin-1-yl H 91

e
4-[bis(4-fluorophenyl) 
methyl]piperazin-1-yl

H 73

f piperidin-1-yl OCH3 78

Scheme 2. Synthesis of 5-sec.amino-2,3,6,7-tetrahydro-1H-cyclopenta-[c]phenan-
threne-4-carbonitriles 7.
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a 4-morpholin-1-yl 88
b 4-(pyridine-2-yl)-piperazin-1-yl 73

Scheme 3. Synthesis of 6-sec.amino-1,2,3,4,7,8-hexahydrobenzo[c]-phenanthrene-
5-carbonitriles 9.
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either through (i) partial reduction or (ii) increasing the size of the
fused alicyclic ring or (iii) through substitution in the overcrowd-
ing region of the molecule, or (iv) combination of all.

This manuscript describes the synthesis of diverse partially re-
duced different ring sizes of PAH analogs such as 5-sec.amino-
2,3,6,7-tetrahydro-1H-cyclopenta[c]phenanthrene-4-carbonitriles
7, 6-sec.amino-1,2,3,4,7,8-hexahydrobenzo[c]phenanthrene-5-
carbonitriles 9, 7-sec.amino-2,3,4,5,8,9-hexahydro-1H-cyclohep-
ta[c]-phenanthrene-6-carbonitriles 11, and 8-sec.amino-2,3,4,5,6,9,
10-heptahydro-1H-cycloocta[c]phenanthrene-7-carbonitriles 13
through base-induced ring transformation of 4-sec.amino-2-oxo-
5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles by a carbanion,
generated in situ from cycloalkanones.

An alternative route to the synthesis of partially reduced cyclo-
alkyl[c]phenanthrenes, pendant with secondary amine and nitrile
functionalities, necessitated the construction of 2-oxo-4-meth-
ylsulfanyl-5,6-dihydro-2H-benzo[h]-chromene-3-carbonitrile 3 as
a key step and was obtained from the reaction of methyl 2-cya-
no-3,3-dimethylthioacrylate 1 with 1-tetralone 2 in the presence
of powdered KOH using DMSO as a solvent at room temperature.
Amination of 3 with secondary amine in refluxing ethanol gave 4-se-
c.amino-2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles 4
in good yields20 (Scheme 1) and was used directly as a precursor for
the ring transformation study.

As is evident from the topography of 4-sec.amino-2-oxo-5,6-
dihydrobenzo[h]chromene-3-carbonitriles 4, that they possess
three electrophilic centers C-2, C-4, and C-10b in which the latter
is highly susceptible to nucleophilic attack due to extended conju-
gation and the presence of an electron-withdrawing CN substitu-
ent at position 3 of the chromene ring. The nucleophiles used for
the ring transformation reactions were carbanions, generated
in situ from cycloalkanones in the presence of base in DMF. The
initial step in the formation of 5-sec.amino-2,3,6,7-tetrahydro-
1H-cyclopenta[c]phenanthrene-4-carbonitriles 7 is attack of the
carbanion at C-10b of the chromene 4 with formation of Michael
adduct followed by ring closure involving carbonyl group of cyclo-
pentanone and C-3 of the chromene with loss of carbon dioxide
and water as depicted in Scheme 2.

Under analogous reaction conditions a mixture of 4 with cyclo-
hexanone 8 in the presence of powdered KOH gave a crude product
9 which was purified through neutral alumina column as 6-sec.a-
mino-1,2,3,4,7,8-hexahydro benzo[c]phenanthrene-5-carbonitriles
in very good yields (Scheme 3). In this reaction also carbanion from
cyclohexanone initiated the ring transformation following similar
course of reaction.

Analogously, a reaction of 2-oxobenzo[h]chromene 4 with
cycloheptanone 10 produced 7-sec.amino-2,3,4,5,8,9-hexahydro-
1H-cyclohepta[c]phenanthrene-6-carbonitriles 11 (Scheme 4).

Under similar reaction conditions the ring transformation of 4
with cyclooctanone in the presence of powdered KOH in DMF pro-
duced 8-sec.amino-2,3,4,5,6,9,10-heptahydro-1H-cycloocta[c]phen-
anthrene-7-carbonitriles 13 in moderate yields (Scheme 5).

The ring transformation of 4 by higher homologs of cycloalka-
nones beyond eight membered did not occur and lactone was always
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Scheme 1. Two-step synthesis of 2-oxobenzo[h]chromene 4.
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Scheme 4. Synthesis of 7-sec.amino-2,3,4,5,8,9-hexahydro-1H-cyclohepta[c]phen-
anthrene-6-carbonitriles 11.
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Scheme 5. Synthesis of 8-sec.amino-2,3,4,5,6,9,10-heptahydro-1H-cyclooc-
ta[c]phenanthrene-7-carbonitriles 13.
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Scheme 6. Synthesis of oxachrysene 14 in lieu of usual product benzochrysene 15.
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recovered. The attack at C-10b by bigger size of the carbanion formed
from higher homologs of cycloalkanone is hindered.

It is quite interesting that the use of fused cyclic ketones such as
1-tetralone, for the ring transformation of 4 did not follow the
same course of reaction under analogous reaction conditions and
the product isolated was characterized as (7,8-dihydro-5-oxa-
benzo[c]chrysene-6-ylidene)acetonitrile 14. In this reaction also
carbanion generated in situ from 1-tetralone attacks at C-10b fol-
lowed by enolate addition to enamine with loss of secondary
amine and subsequent oxidation, yields 1421 in lieu of usual ring
transformed product 15 as depicted in Scheme 6. From this reac-
tion it was concluded that the presence of fused benzene ring in
1-tetralone facilitates the enolization that ultimately participates
in the ring closure to yield 14.

All the synthesized compounds were characterized by spectro-
scopic analysis.22

This is the first non-catalytic approach for the concise synthesis
of partially reduced angularly fused polycyclic aromatic hydro-
carbons through base-induced ring transformation of 4-sec.ami-
no-2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles by a
carbanion generated in situ from cycloalkanone in DMF at room
temperature. This methodology is very efficient, economical, and
provides an easy access for the construction of different ring sizes
of PAHs.
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